第1讲:神经网络与深度学习
- 课程介绍
- 相关工具下载及安装
- 深度学习:https://zh.d2l.ai/
第2讲:大语言模型及其平台
- 大语言模型基础理论
- 魔搭社区:https://www.modelscope.cn/docs/home
- 提示词工程:https://www.bilibili.com/video/BV1e8411o7NP
第3-7讲 深度学习与大语言模型专题论文系列
专题一:Transformers
- Transformer: Attention Is All You Need
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- ERNIE: Enhanced Language Representation with Informative Entities
专题二:GPT
- GPT1: Improving Language Understanding by Generative Pre-Training
- GPT2:Language Models are Unsupervised Multitask Learners)
- GPT3:Language Models are Few-Shot Learners
- GPT-4 Technical Report(参考资料,不用精读)
专题三:ChatGPT
- ChatGPT: https://openai.com/blog/chatgpt/
- Training language models to follow instructions with human feedback
- Deep Reinforcement Learning from Human Preferences
专题四:DeepSeek
- DeepSeek-V3 technical report
- DeepSeek-R1: incentivizing reasoning capability in LLMs via reinforcement learning
- Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
- TinyBERT: distilling BERT for natural language understanding
专题五:图神经网络
- A Gentle Introduction to Graph Neural Networks
- DoubleH: Twitter User Stance Detection via Bipartite Graph Neural Networks
- Semi-Supervised Classification with Graph Convolutional Networks
- Graph Attention Networks
- Heterogeneous Graph Attention Network
其他补充
- 工具推荐:https://kayzhou.github.io/2024/tools/
- AIGC合集:https://space.bilibili.com/3493138152819508/lists/4466965
- 如何阅读文章 https://www.bilibili.com/video/BV1H44y1t75x/
- 跟读者建立联系 https://www.bilibili.com/video/BV1hY411T7vy/
- 明白问题的重要性 https://www.bilibili.com/video/BV11S4y1v7S2/
- 如何讲好故事、故事里的论点 https://www.bilibili.com/video/BV1WB4y1v7ST
- 理由、论据和担保 https://www.bilibili.com/video/BV1SB4y1a75c
- GPU安装 https://www.bilibili.com/video/BV18K411w7Vs
考核方式任选一种:
(一)课堂论文精讲
3个同学一组,精讲一篇文章(要求50分钟左右)。
(二)实验报告(深度学习销量预测,商品多层次多标签分类,任选其一)
利用提供的数据编写代码和撰写实验报告,要求包含问题定义、实验模型、实验过程、实验结果。提交报告和代码。
(三)文献综述
围绕自己所在专题展开文献综述,要求字4000以内,引用相关文章20+篇。